Biofilms and microbial adhesion

Food and beverage industries operate their production units under stringent hygiene standards to verify high-quality products. However, the presence of biofilms can cause hygienic problems in the industries in the case of pathogenic organisms. Microorganisms can form biofilms, which are resistant to cleaning and disinfection. Microorganisms in biofilms are closely packed in a matrix that acts as a barrier to cleaning and disinfection. Biofilms are observed in processing equipment and open surfaces, resulting in food safety problems or weakening of production efficiency.
The growth of a bacterium is defined as the increase in cells number rather than the cell size. There are certain requirements for bacterial growth and factors that influence the growth process. Temperature, pH, osmotic pressure, mixing, and oxygen concentration are the main factors influencing bacterial growth. There are also nutritional requirements, besides these factors. The replication process is not through mitoses and meiosis, but through a process that is known as binary fission. The DNA of a singular bacterium will be replicated during binary fission. Afterwards, the DNA will be divided, and the cell wall and the membrane will form a transverse septum. The transverse septum will be completely formed, which will enable cells separation, thus generating new bacterial cells. The time interval required for the cell division is one pivotal parameter in bacterial growth, which is known as generation time. The generation time depends on the type of organism and the environmental conditions.
Bacterial adhesion is one of the challenges in the field of microbial research. Bacterial adhesion has a negative influence on bacterial growth and mobilization. In order to grow, microorganisms require the right conditions and the amount of nutrients. If bacteria adhere to the material surface, they obtain fewer resources, a fact that subdues the bacterial growth. An addable negative effect of bacterial adhesion is the creation of biofilms layer to the material surface. The biofilm layer reinforces the adhesion phenomenon, slowing the bacterial growth and leading to a deficit of the end-product. The bacterial adhesion can be firstly expounded by the physicochemical interactions between the bacteria and the surface, and secondly by the molecular and cellular interactions between the bacteria and the surface.
Biofilms can cause hygienic problems in industries in the case of pathogenic organisms. Microorganism colonization leads to biofilm formation, which causes problems in the industrial production processes. The control and elimination of biofilms are under-investigated, and this review provides a consolidated briefing of the bio fouling process, including the production mechanisms and control techniques of microbial adhesion.
Media Contact:
Sophie Kate
Managing Editor
Microbiology: Current Research
Email: aamcr@alliedacademies.org